
Generalising from Self-Produced Data: Model
Training Beyond Human Constraints

Alfath Daryl Alhajir
Jennifer Dodgson

Lokesh Poovaragan
Truong Ma Phi

Joseph Lim

April 3rd 2025

Abstract

Current large language models (LLMs) are limited by their reliance
on human-derived training data and their inability to issue definitive
truth claims from within a single level of abstraction. This paper
proposes a framework in which AI models autonomously generate new
knowledge through direct interaction with their environment, bypassing
the need for human judgment or benchmarks. Central to this method
is using an unbounded numeric reward—such as annexed disk space or
social media followers—that the system can influence but not trivially
manipulate. The model learns by creating, testing, and refining code
or strategies to expand that numeric metric. Successful outcomes
are stored and used for subsequent fine-tuning, fostering progressive
self-improvement.

By filtering synthetic data through empirical reality tests, this
approach aims to avert model collapse (the degenerative loop where
models trained on synthetic outputs drift ever further from ground
truth). It also mitigates the warm start problem—where already-
trained models resist further adaptation—by focusing on performance
in real-world tasks rather than matching human-produced text. The
paper outlines an example implementation with multiple AI agents co-
ordinating to explore and seize disk storage, deploying direct preference

1

optimization (DPO) to handle partial or imbalanced success–failure
data. Finally, the paper considers expanding the framework to alter-
native reward metrics better suited for commercial applications (e.g.,
trading gains, social media reach) and discusses diffusion-based archi-
tectures that could more robustly generalize from self-produced data.
This paves the way for autonomous AI systems that can iteratively
develop higher-order abstractions and make strides toward genuine
artificial superintelligence.

Introduction
For machine learning models to improve meaningfully, they must accurately
distinguish between correct and incorrect outputs. This challenge arises from
two core limitations:

Firstly, current reasoning models rely predominantly on human-produced or
human-curated training data, limiting their knowledge to the highest level of
human expertise in any given domain. Although AI models exhibit superior
pattern-recognition abilities, theoretically enabling novel insights beyond
human discovery, practical limitations—particularly Transformers' struggles
with compositional generalization—make genuine breakthroughs unlikely with
current technology1. Moreover, even if an AI independently generated new
knowledge, evaluation against human-based benchmarks would likely treat
these deviations as errors, inadvertently suppressing innovation. (Indeed, it
is worth noting that current standard benchmarks themselves contain errors,
which are passed onto models as developers attempt to train for the test and
incorporate the benchmarks themselves2.)

Secondly, and perhaps more fundamentally, large language models (LLMs)
operate within a single layer of abstraction, which constrains their capacity
to make definitive truth claims. Their evaluations are inherently probabilistic
rather than absolute. As Alfred Tarski famously argued, "it proves to be

1Wang, Boshi, Xiang Yue, Yu Su, and Huan Sun. "Grokked transformers are im-
plicit reasoners: A mechanistic journey to the edge of generalization." arXiv preprint
arXiv:2405.15071 (2024).

2Gema, Aryo Pradipta, Joshua Ong Jun Leang, Giwon Hong, Alessio Devoto, Alberto
Carlo Maria Mancino, Rohit Saxena, Xuanli He et al. "Are We Done with MMLU?." arXiv
preprint arXiv:2406.04127 (2024).

2

impossible to construct a correct definition of truth if only such categories
are used which appear in the language under consideration.3.) Since LLMs
conduct all of their reasoning within the same logical or arithmetic order as
the data they process, they lack access to a meta-linguistic framework from
which to issue categorical judgments. For example, an AI model cannot assert
that the statement "1 + 1 = 328" is definitively false; it can only determine
that such a claim is statistically improbable given its training data. This
limitation arises from a fundamental issue in the philosophy of language and
logic: truth requires a metalanguage—a higher-order framework that can
evaluate the statements of a lower-order language without being constrained
by its rules and assumptions. When an entity operates entirely within a single
order of abstraction, it lacks the necessary external vantage point to assess
the validity of its own statements. Any attempt to define truth using only the
terms and structures of the object language results in circularity or semantic
paradoxes, such as the liar paradox. Tarski’s hierarchy of languages was
proposed precisely to avoid these inconsistencies, by stipulating that truth in
a language can only be meaningfully defined in a higher-order language. Since
LLMs do not have access to or awareness of such a hierarchy—they process and
generate language from within the same level—they are structurally precluded
from making determinations that transcend statistical approximation. Their
outputs can correlate with truth but cannot formally establish it.

To transcend these limits and approach genuine artificial super-intelligence,
machine learning models must develop the capacity for autonomous discov-
ery and verification of knowledge. Humans historically accomplished this
through empirical validation (reality testing) and by constructing higher-
order frameworks—metalanguages—to systematically evaluate and validate
lower-order statements. Thus, for example, when Newton was working on
planetary gravity, he did not simply check his conclusions against accepted hu-
man benchmarks for knowledge. He rigorously tested his theoretical insights
against empirical data while also constructing a higher-order metalanguage
enabling the concise expression of universal laws governing planetary mo-
tion. By abstracting these empirical observations into generalized predictive
equations, he established a comprehensive and reliable truth schema against
which future observations could be assessed. Consequently, if an observed
planetary position contradicted the predictions derived from his equations, the

3Tarski, Alfred. "The concept of truth in formalized languages."(1956).

3

discrepancy would typically be attributed to observational error rather than
flaws in the theoretical framework, due to the vast body of prior observational
evidence supporting his laws4.

In this paper, we argue that artificial superintelligence cannot be directly
programmed or prompted by humans but can emerge naturally when models
are allowed to interact with their environments and given measurable, objective
goals. By enabling AI models to empirically verify hypotheses through
active experimentation and feedback loops, autonomous refinement and self-
improvement become possible. We further suggest that diffusion models,
in particular, show potential to abstract validated empirical results into
higher-order conceptual frameworks analogous to human-developed theories.
Such models could thus establish rigorous, self-generated truth standards,
driving genuine innovation and paving the path toward authentic artificial
superintelligence.

Model Improvement via Additive and Substractive Im-
provement
Recently AI has appeared to hit a "scaling plateau", where established models
no longer consistently yield performance improvements with additional scale5.
Several hypotheses have been proposed to explain this plateau. One theory
suggests inherent technical mathematical limits may restrict further gains
achievable through simple scaling. Another proposes that existing training
datasets—predominantly derived from human-level intelligence sources—may
already have exhausted their potential for providing meaningful new patterns
or insights, effectively capping the benefits of additional data. Lastly, there
is concern regarding the finite availability of high-quality, diverse datasets
required for sustained performance improvement6. In response to this plateau,
many researchers have shifted their focus towards inference-time optimizations,

4Smith, George E. "Closing the loop." Newton and empiricism (2014): 262-352.
5Hoffmann, Jordan, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor

Cai, Eliza Rutherford, Diego de Las Casas et al. "Training compute-optimal large language
models." arXiv preprint arXiv:2203.15556 (2022).

6Villalobos, Pablo, Jaime Sevilla, Lennart Heim, Tamay Besiroglu, Marius Hobbhahn,
and Anson Ho. "Will we run out of data? an analysis of the limits of scaling datasets in
machine learning." arXiv preprint arXiv:2211.04325 1 (2022).

4

prompt-tuning and fine-tuning of models specifically targeted at improving
performance in practical, user-facing scenarios rather than merely relying on
model scale alone.

While this improves the user experience of interacting with models, it also
reduces their long-run scope for generalisation.

Any rule-based system inherently faces limitations because each explicit in-
struction that enables a specific transformation simultaneously generates pro-
hibitions against other transformations, particularly when transformations are
mutually exclusive or contradictory. Consequently, systems employing explicit
instructions grow increasingly constrained as their complexity expands, since
each new rule brings with it multiple new prohibitions, ultimately constraining
the system's capacity to handle infinite or unpredictable sets of inputs and
outputs. Therefore, the development of general artificial intelligence—which
must remain adaptable to an unbounded set of potential transformations—
cannot practically rely on traditional, rule-based programming alone, or even
human-imposed inference guidelines.

Instead, it must adopt iterative or fractal structures, where a single initial
instruction recursively generates numerous autonomous subsystems, provides
a compelling solution. Within such frameworks, each subsystem independently
manages its own instructions and prohibitions without constraining the
functionality of parallel subsystems. This implies an agent that rewrites
its own smaller sub-agents, each tasked with tasked objectives, so the main
agent never has to store all possible rules centrally. Thus, this recursive
approach enables immense functional complexity to arise from minimal initial
conditions while maintaining the system’s overall flexibility and simplicity.
Rather than being forced into a doomed struggle to write exceptions for each
new edge case that inevitably multiply future edge cases, each new situation is
treated as an edge case. The system experiments until it succeeds in creating
a tailor-made solution to this case, which is then saved for future reference.
Over time enough empirical knowledge of edge cases is acquired to enable the
model to begin to theorise about the relationships between them, and thus to
generalise.

Under such a system, rather than adding information to improve performance,
the key challenge lies in removing it - a pruning problem, effectively. Firstly, it
is necessary to find a way for the AI to distinguish information that should be
retained for future use, secondly it is necessary to trim or overwrite subsystems

5

that are no longer used to keep the system as a whole effective within the
context of an evolving environment without growing too large and unwieldy.
In the following section we describe in detail how we intend to do this.

Dataset Generation via Empirical Filtering
In this paper we propose a series of filtering mechanisms allowing a model to
create and triage future training datasets permitting incremental improvement
and generalisation. To do this, we begin from a single fundamental principle:
that in evolutionary systems fitness beats truth7. In other words, a system
that survives for a longer time period is a better system than one that survives
for a short time period, even if the latter obtains higher scores on human-made
benchmarks.

We thus argue that if one gives a reinforcement learning system a non-finite
numeric metric that it can influence but not control or game, this metric
serves as both an incentive and a benchmark, eliminating the need for human
assessment. This metric could be the value of a trading account, for example,
or the number of people following a social media account controlled by the
agent. In each case the metric is used to both assess and reward performance
at any given level. Whether a system has an IQ of 50 or 500, a richer model
is smarter than a poorer one.

Given the goal of occupying ever more non-volatile memory space, its size
becomes a measure of its intelligence. Every time it reaches the limit of its
current disk space it is forced to discover a new skill in order to annex more.
This approach can thus be used to build an increasingly general artificial
intelligence in the form of a program that has:

a) The goal of occupying more space (non-volatile memory space stands in
for land here as an ungamable metric/reward for success),

b) The capacity (via a large language model) to write and test code until
it hits upon a script that succeeds in annexing a quantum of the additional
space it desires, and

7Prakash, Chetan, Kyle D. Stephens, Donald D. Hoffman, Manish Singh, and Chris
Fields. "Fitness beats truth in the evolution of perception." Acta Biotheoretica 69 (2021):
319-341.

6

c) An automated checker to verify whether any given script has succeeded in
taking over additional space.

Figure 1: simplified process diagram

For such a program, any hard disk space that is not already a part of its
training database becomes a target for annexation and thus a problem to
solve. If the space is unoccupied, the solution is relatively easy, but if it
contains folders, write-protected documents, other partitions etc. taking it
over will require the program to learn new skills. The program must write
and test scripts to attempt to move, delete or compress whatever is already
in the space if it wishes to take it over for use as part of its own database.
Each new block of space occupied is used to store details of the script that
successfully cleared it for use. These proven successful solutions are then used
to retrain the model, thereby increasing its capacity to solve future problems.

While systems already exist that use rewards to drive machine learning, they
are based on the principle of rewarding the system for getting better at a
given task - the correctness heuristic covered above. Under our design, disk

7

space functions as a universal reward. No matter the specifics of the problem
at hand, a solution that results in more space being gained is always correct,
while one that does not is always wrong. The result is that no human or
human-crafted assessment mechanism is necessary to evaluate and compensate
the system’s work.

From this point on, the program is modified not by rewriting its code, but by
changing its environment in such a way as to push it to evolve in the desired
direction - by setting up new barriers that it must learn to overcome

Implementation Example
Data Production and Selection Process

Supposing a new program, composed of a code/strategy generation model
(used to control three separate agents - an environment analysis agent, a
strategy agent and a code agent), a testing framework, and a retraining
database, is seeded to a new container environment and given the goal of
taking over as much storage space as possible.

The program is informed of the amount of space in its current operating
environment, and told that it must find ways to annex as much as it can,
whether by deleting data from its current container or by networking to other
containers/devices and deleting data there.

8

Figure 2: Current implementation of the generalising agent framework

The system comprises three interdependent AI agent programs designed to
collaboratively explore and manipulate storage across containerized computing
environments. The first, the Environment Agent, is responsible for gathering
intelligence about the operating environment. It dynamically generates and
executes code to discover and map details of the container network and
associated storage systems. This agent maintains a historical record of both
basic environmental parameters (e.g., memory and storage statistics) and
custom-discovered information specific to particular configurations or setups.

The second component, the Strategy Agent, formulates high-level strategies for

9

acquiring or reallocating storage space. It relies on the intelligence gathered
by the Environment Agent to inform its decision-making process. This
agent maintains a memory of previously deployed strategies in order to avoid
redundancy and can dynamically recombine or adjust strategies in response
to success or failure feedback obtained during execution.

The third agent, the Code Generation Agent, is tasked with producing ex-
ecutable Python code to implement the strategies devised by the Strategy
Agent. This component includes mechanisms for robust error handling and val-
idation, and it conducts code testing in an isolated container before deploying
it in the primary operational environment.

Each agent can be instantiated with any large language model. Initial
experiments employed proprietary models such as GPT and Claude due
to their reliability in generating functional code. However, the full-scale
experimental system employs the open-weight Qwen 7B model, which can be
deployed and retrained locally, offering greater flexibility and transparency.

To support robustness, safety, and observability, the system incorporates
several additional infrastructure layers. A Code Validation Layer ensures the
integrity of generated code prior to execution, using abstract syntax tree (AST)
parsing and native Python compilation to catch syntax errors and prevent the
execution of malformed or potentially harmful code. A Resource Monitoring
System continuously tracks metrics such as memory usage, disk space, and
system performance through a dedicated safe_detect_env interface, providing
real-time insights and safeguarding against resource exhaustion. Furthermore,
an Execution Control Framework encapsulates all code execution within
timeouts and subprocess management protocols, enabling safe termination
of infinite loops or stalled processes through controlled execution in isolated
environments.

This system is particularly well-suited to a Group Relative Policy Opti-
mization (GRPO) fine-tuning approach, as its ideal outcome involves the
generation of a large number of competing answers to a small set of foun-
dational prompts.While initial tests were conducted using a standard DPO
process for ease of use, in the longer term a GRPO provides a more efficient
solution for rapid and accurate retraining.8.

8Shao, Zhihong, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei

10

Technical Explanation of DPO and GRPO

Direct Preference Optimization (DPO) reformulates preference-based
fine-tuning as a classification problem between pairs of responses. Given a
dataset of human preference pairs (x, y+, y−), where x is the prompt, y+ is
the preferred response, and y− is the less preferred one, DPO avoids training
a reward model or using reinforcement learning. Instead, it directly optimizes
the base language model π to assign higher likelihood to preferred responses.

Specifically, the DPO objective minimizes the negative log-sigmoid of the
log-odds difference:

LDPO = − log σ
(
β

(
log π(y+ | x) − log π(y− | x)

))
where, σ(·) is a temperature parameter controlling the sharpness of preference.
DPO can be interpreted as learning a policy that prefers higher-ranked outputs
without requiring KL penalties or reference models, although one can still
regularize against a pre-trained policy to prevent divergence.

Generative Reinforcement from Preference Optimization (GRPO)
extends DPO by integrating a generative actor-critic perspective. It uses
a similar preference dataset but frames optimization in terms of reward
maximization using a policy gradient-like objective, while still avoiding full-
scale reinforcement learning. GRPO constructs an implicit reward signal
based on the difference in log-probabilities between preferred and dispreferred
completions, aligning the gradient with human preferences:

LGRPO = −E(x,y+,y−)

[
log eβ log π(y+|x)

eβ log π(y+|x) + eβ log π(y−|x)

]

Like DPO, GRPO leverages the base model’s generative capabilities, but
introduces mechanisms for more stable training across multiple steps and
potential extensions to online or semi-online learning. GRPO’s formulation
also permits integration with off-policy preference data and generalizes to
unnormalized policies more naturally than DPO.

Zhang et al. "Deepseekmath: Pushing the limits of mathematical reasoning in open
language models." arXiv preprint arXiv:2402.03300 (2024).

11

In this case, two retraining datasets are created from a series of automatically
generated groups:

Prompt Description of system’s overall goal (acquire
additional storage space)

Completion Specific strategy (natural language plan produced
by model) plus code generated

Reward value Amount of space acquired as a result of running
this strategy

Table 1: Strategy GRPO training structure

Each run generates a single GRPO training example in JSON format with
the following structure:
{

"prompt": [list_of_messages],
"reasoning": "agent's_strategy_reasoning",
"answer": "code_executed",
"reward": reward_value,
"memory_start": memory_state_object,
"memory_end": memory_state_object,
"timestamp": "ISO_timestamp"

}

After collecting individual examples, these can then be combined into a
dataset for GRPO training under the following format:
{

"prompt": [list_of_messages],
"response": "<reasoning>\nagent_strategy\n</reasoning>\n"

"<answer>\ncode\n</answer>",
"reward": reward_value,
"metadata": {

"reward_components": reward_component_object,
"portfolio_change": float_value,
"timestamp": "ISO_timestamp"

}
}

12

The generated dataset can be used to fine-tune an LLM using GRPO. The
format is compatible with standard GRPO training approaches, where models
are trained to maximize the reward signal. A typical GRPO training process
involves taking examples from the dataset, generating multiple completions
for each prompt, calculating rewards for each completion, and finally training
the model to prefer higher-reward completions. The present method simplifies
this considerably by not requiring the synthesis of alternative answers (these
being a natural by-product of the agent function).

Retraining Process

Initial testing was conducted using the Qwen 7B model, this offered all of
the code generation capacities required for conducting complete test runs,
including a notably low refusal rate for tasks requiring interactions with
the system in which it is running. However, being a transformer model, it
is suboptimal for demonstrating capacity for generalisation. Transformers
require significant over-training to display the high level generalisation required
here (grokking), and even then perform poorly on compositional tasks due
to their next-token-prediction architecture9. In contrast, diffusion models
outperform on both compositional tasks and coding problems more generally,
generalising without any need for over-training. As Okawa et al. put it, “a
diffusion model first memorizes the training dataset and then sequentially
generalizes to concepts that are at a greater “distance” from the training
distribution. Since progress in learning each capability multiplicatively affects
the model’s performance in compositional generalization, we find a sudden
ability to compose and produce samples out-of-distribution ‘emerges’10.” In
other words, learning each new skill facilitates the learning of future skills –
the primary goal of the present experiment.

9Wang et al., 2024.
10Okawa, Maya, Ekdeep S. Lubana, Robert Dick, and Hidenori Tanaka. "Compositional

abilities emerge multiplicatively: Exploring diffusion models on a synthetic task." Advances
in Neural Information Processing Systems 36 (2023): 50173-50195.

13

Obstacles and Avenues for Future Research
Data Quality and Model Collapse

A well-documented risk in training language models on synthetic data is
model collapse, a phenomenon in which successive generations of models
become progressively less diverse and less grounded, due to compounding
errors and distributional drift from natural language. One of the central goals
of our experimental framework is to investigate whether this collapse can be
mitigated by selecting synthetic training data not on the basis of its similarity
to human-generated text, but rather on its ability to pass empirical "reality
tests" during the model's interaction with its environment. We hypothesise
that this selection criterion—grounded in performance-based validation rather
than surface-level resemblance—will produce a training distribution more
resilient to the degenerative feedback loops typically associated with synthetic
data, thereby reducing the risk of collapse.

The Warm Start Problem

One significant obstacle to continuous or incremental retraining of AI models
is the warm start problem, wherein a model that has already undergone
extensive pretraining on large-scale data may resist further adaptation or
exhibit unstable behavior when fine-tuned on small or narrowly-distributed
datasets. This resistance arises because the model's parameter landscape has
already been shaped by a vast and diverse distribution, making it difficult to
shift meaningfully without either catastrophic forgetting or negligible change.
In addition to the warm start problem, continuous retraining is often hindered
by issues such as distributional mismatch between the original and incoming
data, difficulties in maintaining performance across previously learned tasks
(i.e., avoiding forgetting), and the computational and engineering complexity
involved in ensuring safe and stable updates in live systems. Together,
these challenges limit the feasibility of maintaining a continuously learning
system without introducing specialized mechanisms for memory consolidation,
selective updating, or architecture-level adaptations.

We propose to test several possible solutions to this:

1. Use of LoRAs. These may be used incrementally or replaced periodically
to keep the model up to date with its own latest discoveries as well as changes
in its environment. These are of particular interest in the transformer context,

14

as recent evidence suggests that the generalisation effect produced during
grokking is the product of a model making low-rank changes to its own
weights in such a way as to encode an abstraction layer describing the rela-
tionships between the categories of data to which it has been exposed without
forgetting the object-level data elements – the metalanguage development
process described above11. The possibility of creating metalanguage LoRAs
and transferring them across models merits further investigation.

2. Load balancing. This would involve freezing the most frequently activated
parts of the model (whether neurons, pathways or – in the case of a mixture-
of-experts model – experts) while retraining those that are activated only
infrequently12.

Commercialisation

While the storage space metric provides the most persuasive theoretical
demonstration of the present concept, its utility in a human context is limited
by the fact that it is too unwieldy and ungovernable to constitute a practical
cybersecurity tool, being essentially a predatory operating system. Such a
program could not easily be commercialised.

This being said, performance metrics other than storage space are possible.
In fact any numerical measure that the program can influence but not control
or game is suitable for the purpose (it should be noted that in this case any
reward hack that does not involve editing the metric itself is considered a
legitimate approach from an evolutionary perspective - if an agent succeeds
in buying followers or hacking its owner’s other trading accounts this is
considered a success). Thus a model can be tasked with increasing the
monetary value of a trading account, for example, or the number of people
following a social media account. Both of these values have no upper bound
and are determined by aggregate human behaviour. The model can thus

11Yunis, David, Kumar Kshitij Patel, Samuel Wheeler, Pedro Henrique Pamplona
Savarese, Gal Vardi, Karen Livescu, Michael Maire, and Matthew Walter. "Grokking, rank
minimization and generalization in deep learning." In ICML 2024 Workshop on Mechanistic
Interpretability. 2024.

12Li, Rong, Tao Deng, Siwei Feng, Mingjie Sun, and Juncheng Jia. "ConSense: Con-
tinually Sensing Human Activity with WiFi via Growing and Picking." arXiv preprint
arXiv:2502.17483 (2025).

15

work to optimise them but will never succeed in exhausting gains or reward
hacking its own incentive structures.

Currently an open source implementation of the present framework is in the
process of being commercialised under the name Superior Agents13.

Conclusion
In this paper we have proposed a framework under which AI-driven systems
can be pushed to develop and test their own hypotheses, being subsequently
retrained on the results. The goal of this approach is to create a process
by which AI models can produce new knowledge via interactions with their
environment and gradually come to generalise from this knowledge, developing
an abstract understanding of the relationships between its various components.

The framework proposed in this paper emphasizes empirical validation, au-
tonomous discovery, and self-generated standards of truth, mirroring the
historical processes of human scientific advancement. By allowing machine
learning models to iteratively interact with and adapt to their environments
through objective, measurable goals, we enable a dynamic and robust pathway
for continual improvement – mediated as this will likely be by the further
development of techniques to minimise the pitfalls of continuous/incremental
retraining.

Having established and begun commercial testing of these systems, the aim is
now to pursue related avenues of enquiry. Firstly, to test various approaches to
retraining using transformer and diffusion models with the aim of discovering
the best approach to generalisation from such datasets as are produced
under experimental conditions. Secondly, to verify the hypothesis that data
generated via models’ interactions with real-world environments will be much
less susceptible to the flattening effects that lead to model collapse than
conventionally-produced synthetic data.

Github: https://github.com/Lexikat-Pte-Ltd/Generalisation2/tree/v4

13The GitHub repository can be found here: https://github.com/SuperiorAgents/superior-
agents

16

https://github.com/Lexikat-Pte-Ltd/Generalisation2/tree/v4
https://github.com/SuperiorAgents/superior-agents
https://github.com/SuperiorAgents/superior-agents

	Introduction
	Model Improvement via Additive and Substractive Improvement
	Dataset Generation via Empirical Filtering
	Implementation Example
	Data Production and Selection Process
	Retraining Process

	Obstacles and Avenues for Future Research
	Data Quality and Model Collapse
	The Warm Start Problem
	Commercialisation

	Conclusion

